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LETTER TO THE EDITOR

Deterministic spin models with a glassy phase transition

I Borsari, M Degli Esposti, S Graffi and F Unguendoli
Dipartimento di Matematica, Università di Bologna, 40127 Bologna, Italy

Received 18 October 1996

Abstract. We consider the infinite-range deterministic spin models with HamiltonianH =∑N
i,j=1 Ji,j σiσj , where J is the quantization of a chaotic map of the torus. The mean-field

Thouless–Anderson–Palmer (TAP) equations are derived by summing the high-temperature
expansion. They predict a glassy phase transition at the critical temperatureT ∼ 0.8.

A class of infinite-range deterministic Ising spin models with glassy behaviour in numerical
simulation has recently been identified [1–3]: unlike the random coupling case, however,
the mean-field equations [4] (hereafter the Parisi–Potter (PP) equations) are different from
the standard Thouless–Anderson–Palmer (TAP) equations [5] and their linearization does
not determine a critical temperature for the glassy transition.

The most interesting representatives of the class are the sine (equivalently, cosine)
models, with Hamiltonian

H = −1

2

N∑
i,j=1

Ji,j σiσj (1)

where the coupling matrixJ is (twice the uppermost left block) of the discrete sine (cosine)
Fourier transform

Ji,j = 2√
2N + 1

sin

(
2πij

2N + 1

)
i, j = 1, . . . , N. (2)

In fact, the ground state ofH can be explicitly computed [3] if 2N + 1 is prime with
N odd: this leads to the detection of a first-order crystalline phase transition (at a higher
critical temperature than the glassy one [2, 3]), whose relevance on the glassy behaviour
of the system is discussed in [4, section 3]. In turn, the matrixJ coincides [6] with (the
imaginary part of) the unitary propagator quantizing the discrete dynamics generated by the

unit symplectic matrixS =
(

0 −1
1 0

)
acting as a Hamiltonian map over the 2-torusT2

(the operator quantizing a Hamiltonian map of the torus is aN ×N unitary matrix [7, 8],N
being the inverse of the Planck constant†: in this context the thermodynamic limitN →∞
is formally equivalent to the classical limit). This algebraic identity suggests as more natural
candidates for detecting deterministic glassy behaviour the coupling matrices defined by the
quantization of hyperbolic maps overT2. The corresponding discrete dynamical systems

† The physical intuition is: the phase space has volume 1, and can accommodate at mostN quantum states of
volumeh̄, so thatNh̄ = 1.
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are indeed chaotic, whileS generates a period-4 system. Here we consider the matrices

A =
(
a b

c d

)
with a = d = 2g, b = 1, c = 4g2 − 1, g ∈ N, which admit two

positive eigenvaluesλ1 > 1, λ2 < 1. The quantization ofA is [7–9] the unitaryN × N
matrix

V (A)jk = CNN−1/2 exp [(2π i/N)(gj2− jk + gk2)] (3)

with |CN | = 1. The present models are thus defined by the HamiltoniansHA(σ) =∑
j,k J (A)jkσjσk with J(A) = Re[V(A)], i.e.

J (A)jk = CNN−1/2 cos [(2π i/N)(gj2− jk + gk2)]. (4)

Now V(A) = V
T
(A) = V−1(A), whence† σ(Re[V(A)]) = Re[σ(V(A))]. Hence

the equistribution [10] of the spectrumσ(V(A)) over the unit circle forN →
∞ with an eigenvalue at 1 for allN implies the same properties forσ(J(A)) in
[−1, 1].

Our claim is that these deterministic models behave, at least in the mean-field
approximation, more closely to the random models, such as the Sherrington–Kirckpatrick
(SK) model [11]. We will indeed compute in closed form (at the thermodynamic limit
N →∞) the Gibbs (i.e. magnetization dependent) free energyβ8. The result is

β8 = 1/2
N∑
i=1

{(1+mi)ln(1+mi)/2+ (1−mi)ln(1−mi)/2}

−β/2
N∑

i,j=1

J (A)ijmimj −NG(β(1− q)) G(β) = β2/(8+ 4β2) (5)

whereml : l = 1, . . . , N is the magnetization at sitel andq = 1/N
∑n

l=1m
2
l , the Edwards–

Anderson order parameter (as in [4],G(β) does not depend on the particular choice ofJ(A)).
The stationarity condition of the Gibbs free energy [12] yields the mean-field equations of
the model (believed exact because of its infinite range)

Qi ≡ tanh−1mi + 2βG′(β(1− q))mi − β
∑
j

J (A)ijmj = 0. (6)

Unlike the PP equations (but like the TAP [5]) these equations can be solved by
linearization nearq = 0: any eigenvector for the eigenvalue 1 ofJ(A) yields a solution
if 2β2/(2+ β2)2 − β + 1 = 0. Its only positive zeroβ ∼ 1.25 determines the critical
temperatureTc ∼ 0.8. For T > Tc (6) has only a trivial solution, corresponding
to the paramagnetic phase. The phase transition is glassy because, as we will see,
1/N

∑N
l=1ml → 0, N → ∞ at the critical point, while forT < Tc the analysis of [4]

can be applied to yield the existence of an exponentially growing number of solutions of
the TAP equations (6). This fact and (5) implies that all such solutions have the same free
energy. The thermodynamics is thus independent of their number, the multiplicity of the
eigenvalue 1, which depends in a sensitive way on the integerN [10].

To obtain the mean-field equations (6) we resum the high-temperature expansion by the
same procedure as in [4]. The functionG(β) has a simpler form in this case because there
is only one class of non-vanishing diagrams at the thermodynamic limit.

Consider the Helmholtz free energyF(β): if Z(β) = ∑
{σ } expβHA(σ)/2 =

exp−βF(β) is the partition function (at site-dependent magnetic fieldhi = 0) we have [13]

† This holds only ifa, b, c, d are as above, and motivates our choice of hyperbolic matrices.
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e−βF = (2/π)N/2/det
1
2 (βJ )

∫
RN

exp

{
〈(2βJ )−1φ, φ〉 +

∑
i

log cosh(φi + hi)
}

dNφ|hi=0

= 2Nπ−N/2
∫
RN

exp

{
− 〈x, x〉 +

N∑
i=1

log cosh[
√

2β
∑
h

((J 1/2)ihxh]

}
dNx. (7)

The high-temperature expansion forβF(β) is generated out of the integration of the expan-
sion of the exp log coshx. The well known diagrammatic representation of thenth-order
term is obtained [13] by drawing all diagrams withn links, 26 j + 16 n+ 1 vertices and
no external legs, whose individual contribution is:

(1) for any link between two consecutive verticesl 6= k a factorβJlk;
(2) for any vertex withm links the cumulantum, i.e. themth coefficient of the Taylor

expansion of log coshx ([13, p 414]);
(3) any diagram has to be divided by its order of symmetry.
The contribution of each individual diagramD at orderβn is indeed

|D| = U(D)S(D)−1
∑

r1,...,rj+1

J α1
r1,r2
· J α2

r2,r3
. . . J

αj
rj ,rj+1 j = 1, . . . , n. (8)

Here j + 1 is the number of vertices,α1 + · · · + αj = n; n − j + 1 = n − 1, . . . ,1
is the number of loops,αi > 1 the number of links between consecutive vertices,S(D)

the symmetry factor andU(D) = u1(α1)u2(α1+ α2) . . . uj (αj−1+ αj )uj+1(αj ). Note that
rn+1 = r1 for j = n. We now verify that, at the thermodynamic limitN →∞:

(a) all diagrams forn = 2p + 1 vanish;
(b) for n = 2p the only surviving diagramDp is the one withp + 1 vertices,p loops

and two links between consecutive loops:

..... t����t����t..... t����t : |Dp| = (−1)p−12p−2.

To prove (a) and (b), first recall the basic estimate fulfilled by the Gauss sums [14]∣∣∣∣ N∑
s1,...,sl=1

exp(2π i/N)g(s1, . . . , sl)
∣∣∣ 6 CNl/2 (9)

whereg is any quadratic form in thel integerss1, . . . , sl with integer coefficients andC
a constant independent ofg andN . By (3) and (4), the sum in (8) amounts for any fixed
16 j 6 n to 2n Gaussian sums overr1, . . . , rj divided byNn/2. We now argue that all these
Gaussian sums are, once divided byNn/2, of order 1 or less except one: that withn = 2p,
α1 = · · · = αp = 2, and summand independent ofr1, . . . , rp+1, generated by the constant
term in the expansion of

∏
k J

2
rk,rk+1

. This sum is clearly equal toNp+1N−p2−p = N2−p.
Any other (divided) sum is down by at leastN−1: each summation overq indices is
estimated byNq/2 if the summand is a Gaussian and byNq if the summand is constant,
which case shows up wheneverαi is even for at least onei; on the other hand, any
power of αi in excess of one increases by one the number of loops and thus reduces
by one the number of vertices and hence of summation indices. Thus forn = 2p + 1
the most divergent sums behave asNp+1/2: this happens either forαi = 1 for all i so
that j = 2p, or for α1 = · · · = αp−1 = 2, αp = 3 (and permutations thereof) so that
j = p + 1. The prefactorN−(p+1/2) yields the estimate O(1). Forn = 2p the second most
divergent sums have the same behaviour: again they take place forαi = 1 for all i and
j = 2p−1 or forα1 = · · · = αp = 2 with the summand depending but on two indices (up to
permutations). Now the only survivingDp has two vertices with two links (the extrema)
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and p − 1 vertices with four links (all the remaining ones). Sinceu2 = 1, u4 = −2,
U(Dp) = (−2)p−1. Moreover, the symmetry factorS(Dp) is 2 · 2p (to account for the
interchange of the external vertices and of any pair of links between the internal vertices).
HenceU(Dp)/S(Dp) = (−1)p−1/4 and by (8) we have|Dp| = (−1)p−1 ·2−p−2. Summing
up we obtain the Helmholtz free energy:

−βF(β)−N ln 2= N
∞∑
p=1

(−1)p−1 · 2−p−2β2p = Nβ2/(8+ 4β2) = NG(β). (10)

As in [4], expanding−βF(β) to first order we recover the SK Helmholtz free energy
N ln 2+ β2/4

∑
i,j J

2
i,j because here

∑
i,j J

2
i,j = N/2+O(1) for N large.

To obtain the Gibbs free energy we have to perform the Legendre transform

8(β,mi) ≡ max
hi

[
F(β, hi)−

∑
i

himi

]
(11)

out of the (hi dependent) expansion of (7) in powers ofβ. To this end we simply
take over the PP argument because we are summing over a subclass of the ‘cactus’
diagrams considered in [4] within the same assumption of self-averaging, namelym2

k =
N−1∑N

l=1m
2
l + o(1) asN → ∞. This yields (5), and hence the mean-field equations (6)

and the critical temperature.
It remains to prove thatN−1∑N−1

l=0 mlk → 0 asN → ∞ if J(A)mk = mk. Any such
eigenvector defines indeed a critical (staggered) magnetization distribution; furthermore the
vanishing of the total magnetization represents the necessary condition both for the glassy
nature of the transition as well as for self-averaging. Settingφ0 = N−1/2(1, 1, . . . ,1) we
haveN−1∑N−1

l=0 mlk = 〈mk, φ0〉 = 〈mk,V(A)lφ0〉 ∀l ∈ N. On the other hand, [10]V(A)
tends (weakly) to a unitary operator onL2(−π, π) with Lebesgue spectrum on the unit circle
asN →∞. This entails [15] liml→∞ limN→∞〈mk,V(A)lφ0〉 = limN→∞〈mk, φ0〉 = 0.

Moreover, by (5) the specific free energyf = β8/N is the same for all eigenvectors
mk: the third term depends only onq, the second is−βq/2 becauseJmk = mk and

2N−1
N∑
i=1

{(1+mi) ln (1+mi)/2+ (1−mi) ln (1−mi)/2} = q +O(q3/2)

sinceq is by definition small near the critical point. We conclude with two remarks.
(i) The staggered magnetizations can be explicitly computed for some particular values

of N . There is indeed [10]p(N) ∈ N such thatJ(A)p = Id , and for ‘most’ sequences
of values ofN one hasp(N)/N = M,M < ∞. Under these conditions the eigenvalue
1 of J(A) has multiplicity M + 1. A first corresponding (normε) eigenvector is [9]

m1 = cos(2π i/N)kl2/
√
εN wherek

2 = 3(modN), while

mrl = 1/
√
εp

p−1∑
s=0

crs cos(2π i/N)(ars l
2+ brs l)/

√
N r = 2, . . . ,M + 1

where|crs | 6 1 and 06 ars , brs 6 N−1 are integers ([9, formula (4.25)]). By (9) one checks
directly thatN−1∑N−1

l=0 mrl → 0 for all eigenvectors.
(ii) The magnetization just below the critical point has the square-root behaviour of a

second-order transition. Compute indeed the second-order expansionδ2Qi nearβc andm∗

as in [5], puttingβ = βc+1β andmi = m∗i +δmi wherem∗ is any staggered magnetization
vector and〈δm,m∗〉 = 0. Neglecting the term of order1β2, taking the scalar product with
m∗ and dividing byNq the equation〈m∗, δ2Q〉 = 0 we obtainα‖δm‖2 + γ1β = 0 with
α = −2β3

cG
′′(βc) > 0, γ = −1+ 2G′(βc)+ 2βcG

′′(βc) < 0. Hence the assertion.
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(iii) As those of [1–3], the present model is long range and its aim is to reproduce at
least some of the main features of the random models solved with the spontaneously broken
replica symmetry formalism [12]. The agreement with more realistic spin-glass models is
discussed in [16, 17].

We thank G Parisi for a useful conversation.
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